126 research outputs found

    Multiplexed gene expression analysis of HLA class II-associated podoconiosis implicates chronic immune activation in its pathogenesis

    Get PDF
    Background Podoconiosis is a tropical lymphoedema of the leg resulting from barefoot exposure to irritant volcanic soils. Approximately 4 million people are affected, mainly in African highland regions. The pathogenesis of this neglected tropical disease is still largely unknown, although HLA class II (HLAII) polymorphisms are associated with the disease. Methods NanoString technology was used to assess expression of 579 immune-related genes in formalin-fixed and paraffin-embedded lymph node archival samples from podoconiosis patients and unaffected controls. Results Forty-eight genes were upregulated and 21 downregulated in podoconiosis samples compared with controls. Gene ontology analysis showed differentially expressed genes to be closely related to major histocompatibility complex protein, cytokine and TNF receptor binding genes. Pathway enrichment analysis revealed involvement of lymphocyte activation, adaptive immunity, cytokine signalling, antigen processing and the IL-12 pathways. Conclusions This exploratory study reports a multiplex gene expression analysis in podoconiosis and shows upregulation of pro-inflammatory transcripts compatible with the notion of local, chronic immune activation in this HLAII-associated disease. Implicated pathways will inform future research into podoconiosis immunopathogenesis

    Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients

    Get PDF
    Osteoarthritis (OA) is a leading cause of disability, globally. Despite an emerging role for synovial inflammation in OA pathogenesis, attempts to target inflammation therapeutically have had limited success. A better understanding of the cellular and molecular processes occurring in the OA synovium is needed to develop novel therapeutics. We investigated macrophage phenotype and gene expression in synovial tissue of OA and inflammatory-arthritis (IA) patients. Compared with IA, OA synovial tissue contained higher but variable proportions of macrophages (P < 0.001). These macrophages exhibited an activated phenotype, expressing folate receptor-2 and CD86, and displayed high phagocytic capacity. RNA sequencing of synovial macrophages revealed 2 OA subgroups. Inflammatory-like OA (iOA) macrophages are closely aligned to IA macrophages and are characterized by a cell proliferation signature. In contrast, classical OA (cOA) macrophages display cartilage remodeling features. Supporting these findings, when compared with cOA, iOA synovial tissue contained higher proportions of macrophages (P < 0.01), expressing higher levels of the proliferation marker Ki67 (P < 0.01). These data provide new insight into the heterogeneity of OA synovial tissue and suggest distinct roles of macrophages in pathogenesis. Our findings could lead to the stratification of OA patients for suitable disease-modifying treatments and the identification of novel therapeutic targets

    Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth

    Get PDF
    Here, using single-cell RNA sequencing, we examine the stromal compartment in murine melanoma and draining lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/. Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3 expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify three temporally distinct stromal populations displaying unique functional signatures, conserved across mouse and human tumors. Whereas "immune" stromal cells are observed in early tumors, "contractile" cells become more prevalent at later time points. Complement component C3 is specifically expressed in the immune population. Its cleavage product C3a supports the recruitment of C3aR(+) macrophages, and perturbation of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal cells acquire the capacity to modulate immune landscapes from early disease.Peer reviewe

    MultiMAP: dimensionality reduction and integration of multimodal data.

    Get PDF
    Multimodal data is rapidly growing in many fields of science and engineering, including single-cell biology. We introduce MultiMAP, a novel algorithm for dimensionality reduction and integration. MultiMAP can integrate any number of datasets, leverages features not present in all datasets, is not restricted to a linear mapping, allows the user to specify the influence of each dataset, and is extremely scalable to large datasets. We apply MultiMAP to single-cell transcriptomics, chromatin accessibility, methylation, and spatial data and show that it outperforms current approaches. On a new thymus dataset, we use MultiMAP to integrate cells along a temporal trajectory. This enables quantitative comparison of transcription factor expression and binding site accessibility over the course of T cell differentiation, revealing patterns of expression versus binding site opening kinetics

    Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation.

    Get PDF
    Non-lymphoid tissues (NLTs) harbor a pool of adaptive immune cells with largely unexplored phenotype and development. We used single-cell RNA-seq to characterize 35,000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon, their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation pseudotime ordering and gene kinetics were consistent in recruitment to skin and colon, yet the initial NLT-priming in LNs and the final stages of NLT functional adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated using an in vivo melanoma-induction model, validating key regulators and receptors. Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-mammalian conserved tissue signatures. In summary, we describe the relationship between Treg cell heterogeneity and recruitment to NLTs through the combined use of computational prediction and in vivo validation

    Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults.

    Get PDF
    Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) are rare histiocytic disorders induced by somatic mutation of MAPK pathway genes. BRAFV600E mutation is the most common mutation in both conditions and also occurs in the hematopoietic neoplasm hairy cell leukemia (HCL). It is not known if adult LCH or ECD arises from hematopoietic stem cells (HSCs), nor which potential blood borne precursors lead to the formation of histiocytic lesions. In this study, BRAFV600E allele-specific polymerase chain reaction was used to map the neoplastic clone in 20 adults with LCH, ECD, and HCL. BRAFV600E was tracked to classical monocytes, nonclassical monocytes, and CD1c+ myeloid dendritic cells (DCs) in the blood, and mutations were observed in HSCs and myeloid progenitors in the bone marrow of 4 patients. The pattern of involvement of peripheral blood myeloid cells was indistinguishable between LCH and ECD, although the histiocytic disorders were distinct to HCL. As reported in children, detection of BRAFV600E in peripheral blood of adults was a marker of active multisystem LCH. The healthy counterparts of myeloid cells affected by BRAF mutation had a range of differentiation potentials depending on exogenous signals. CD1c+ DCs acquired high langerin and CD1a with granulocyte-macrophage colony-stimulating factor and transforming growth factor β alone, whereas CD14+ classical monocytes required additional notch ligation. Both classical and nonclassical monocytes, but not CD1c+ DCs, made foamy macrophages easily in vitro with macrophage colony-stimulating factor and human serum. These studies are consistent with a hematopoietic origin and >1 immediate cellular precursor in both LCH and ECD

    A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels.

    Get PDF
    Dendritic cells (DCs), macrophages (Mφ), and T cells are major components of the skin immune system, but their interstitial spatial organization is poorly characterized. Using four-channel whole-mount immunofluorescence staining of the human dermis, we demonstrated the three-dimensional distribution of CD31(+) blood capillaries, LYVE-1(+) lymphatics, discrete populations of CD11c(+) myeloid DCs, FXIIIa(+) Mφ, and lymphocytes. We showed phenotypic and morphological differences in situ between DCs and Mφ. DCs formed the first dermal cellular layer (0-20 μm beneath the dermoepidermal junction), Mφ were located deeper (40-60 μm), and CD3(+) lymphocytes were observed throughout (0-60 μm). Below this level, DCs, T cells, and the majority of Mφ formed stable perivascular sheaths. Whole-mount imaging revealed the true extent of dermal leukocytes previously underestimated from cross-section views. The total area of apical dermis (0-30 μm) contained approximately 10-fold more myeloid DCs than the entire blood volume of an average individual. Surprisingly, <1% of dermal DCs occupied lymphatics in freshly isolated skin. Dermal DCs rapidly accumulated within lymphatics, but Mφ remained fixed in skin explants cultured ex vivo. The leukocyte architecture observed in normal skin was distorted in inflammation and disease. These studies illustrate the micro-anatomy of dermal leukocytes and provide further insights into their functional organization

    Human dermal CD14⁺ cells are a transient population of monocyte-derived macrophages.

    Get PDF
    Dendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141(hi)XCR1⁺ CLEC9A⁺ DCs and CD1c⁺ DCs are murine CD103⁺ DCs and CD64⁻ CD11b⁺ DCs. In addition, human tissues also contain CD14⁺ cells, currently designated as DCs, with an as-yet unknown murine counterpart. Here we have demonstrated that human dermal CD14⁺ cells are a tissue-resident population of monocyte-derived macrophages with a short half-life of <6 days. The decline and reconstitution kinetics of human blood CD14⁺ monocytes and dermal CD14⁺ cells in vivo supported their precursor-progeny relationship. The murine homologs of human dermal CD14⁺ cells are CD11b⁺ CD64⁺ monocyte-derived macrophages. Human and mouse monocytes and macrophages were defined by highly conserved gene transcripts, which were distinct from DCs. The demonstration of monocyte-derived macrophages in the steady state in human tissue supports a conserved organization of human and mouse mononuclear phagocyte system
    corecore